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ABSTRACT
Coordination of agent activites in non-deterministic, distributed en-
vironments is computationally difficult. Distributed Constraint Op-
timization (DCOP) provides a rich framework for modeling such
multi-agent coordination problems, but existing representations,
problem domains, and techniques for DCOP focus on small (<100
variables), deterministic solutions. We present a novel approach to
DCOP for large-scale applications that contain uncertain outcomes.

These types of real-time domains require distributed, scalable
algorithms to meet difficult bounds on computation and commu-
nication time. To achieve this goal, we develop a new distributed
neighbor exchange algorithm for DCOPs that scales to problems
involving hundreds of variables and constraints and offers faster
convergence to high quality solutions than existing DCOP algo-
rithms. In addition, our complete solution includes new techniques
for dynamic distributed constraint optimization and uncertainty in
constraint processing. We validate our approach using test scenar-
ios from the DARPA Coordinators program and show that our so-
lution is very competitive with existing approaches.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent Systems

General Terms
Algorithms

Keywords
Distributed Constraint Optimization, Multi-agent Coordination,
Distributed Problem Solving, Task Scheduling

1. INTRODUCTION
Distributed Constraint Optimization (DCOP) is a general prob-

lem representation for multi-agent systems. Recent advances in
DCOP algorithm development have led to an increasing number
of application domains and focus on DCOP techniques. Recent
applications of DCOP to real-world problems include sensor net-
works[7], traffic flow cooperation [4], and event scheduling [6].
These existing problem domains for DCOP focus on small (<100
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variables), deterministic domains. We present a novel approach to
DCOP for large-scale applications that contain uncertain outcomes.

Scalability is one of the primary difficulties in the adoption of
distributed constraint optimization techniques in real-world scale
applications. In our results we present DCOP instances with over
1,000 variables, 5,000 constraints and 30 agents. These are not fea-
sible problem sizes for most DCOP algorithms. We contribute a
new local algorithm for DCOP that converges to high quality so-
lutions in many fewer message passing cycles than existing algo-
rithms.

Existing DCOP formalizations require deterministic utility out-
comes for constraint assignments. This representation precludes
reasoning about uncertainties within a DCOP algorithm, limiting
the current scope of problem domains for DCOP. We introduce a
new DCOP formalization that allows for non-deterministic con-
straint functions that evaluate to discrete utility distributions. These
discrete utility distributions take the place of integer values in
DCOP algorithms and allow the processing of non-linear functions
over combined distributions.

Our approach makes four main contributions: a new DCOP algo-
rithm for large-scale problems, an extension to the existing DCOP
formalism for problems with uncertainty, a mapping from a general
hierarchical planning and execution language (C-TAEMS) to this
formalism, and an implementation of this mapping in a real-world
dynamic environment.

First, we begin with an introduction of the existing DCOP for-
malism. We then introduce a new neighborhood exchange algo-
rithm for DCOP that scales to problems involving thousands of
variables and constraints. Next, we extend the existing DCOP for-
malization to include constraint functions with discrete utility dis-
tributions. We detail the mapping between problem instances in
a hierarchical planning and execution language, CTÆMS, and the
extended DCOP formalism. Finally, we show that our new DCOP
algorithm can be used in conjunction with our extended DCOP
formalism and our CTÆMS problem mapping to produce a full,
real-world scale solution that is very competitive with the general
approaches used in the DARPA Coordinators program.

2. EXISTING DCOP FORMALIZATION
DCOP has been formalized in slightly different ways in recent

literature, so we will adopt the definition as presented in [9]. A
Distributed Constraint Optimization Problem with n nodes and m
constraints consists of the tuple < X, D, U > where:

• X = {x1,..,xn} is a set of variables, each one assigned to a
unique agent

• D = {d1,..,dn} is a set of finite domains for each variable
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• U = {u1,..,um} is a set of utility functions such that each
function involves a subset of variables in X and defines a
utility for each combination of values among these variables

An optimal solution to a DCOP instance consists of an assignment
of values in D to X such that the sum of utilities in U is maximal.
Problem domains that require minimum cost instead of maximum
utility can map costs into negative utilities. The utility functions
represent soft constraints but can also represent hard constraints by
using arbitrarily large negative values.

3. DISTRIBUTED NEIGHBOR
EXCHANGE ALGORITHM

We now introduce a new algorithm to solve large-scale dis-
tributed constraint optimization problems, the Distributed Neigh-
bor Exchange Algorithm (DNEA). We developed this algorithm af-
ter finding that existing DCOP algorithms that can actually run on
larg-scale problems took many message passing cycles to converge
to solutions. DNEA is a local neighborhood search algorithm that
exchanges potential gains for multiple assignments to all neighbors
in each cycle.

We begin with a brief motivation from the problem domain we
will present later that highlighs the need for scalability and dynamic
variable assignment. We continue with the description of the algo-
rithm and its implementation, and present comparisons for differ-
ent algorithms on static versions of the smallest problem sets in our
testing.

3.1 Scalability and Dynamism
Scalability is one of the primary difficulties in the adoption of

distributed constraint optimization techniques in real-world scale
problems. Using our mapping, the smallest problem sets we
present in our results involve 35 variables with 75 constraints over
6 agents. The values for variables/constraints/agents rapidly in-
crease for other problems in our result set to 120/210/25 and up
to 1400/5000/32. These are not feasible problem sizes for most
DCOP algorithms. Any algorithm that scales exponential with re-
spect to any graph characteristic is infeasible for this problem do-
main for anything larger than the smallest problems. Thus, we must
employ local algorithms for distributed constraint optimization.

Another very large hurdle to cross for real-world scale problems
is dynamic changes to the problem during computation. Updates
to the set of variables, the values for different domains, and even
to the constraint evaluations require algorithms to propagate solu-
tion changes very quickly. Current complete algorithms including
ADOPT[7] and DPOP[9] do not adequately handle these cases, and
in the worst case incur the same exponential performance cost as in
the static case. Local algorithms such as DBA, DSA, and MGM
are able to respond very quickly to underlying problem changes,
but often do not arrive at high utility assignments or may take too
many cycles to converge to a solution.

3.2 Algorithm Phases
Our algorithm is similar in phases to other local value exchange

based algorithms, including MGM, SCA, DBA, and max-sum [1,
2]. These algorithms exchange current variable assignments with
neighbors, compute a maximization function based on neighboring
assignments, and then choose to update the local variable assign-
ment. There are two phases to our algorithm, value exchange and
neighborhood utility exchange. An example of a simple execution
path is shown in Figure 1.

3.2.1 Value Exchange

Figure 1: DNEA in action. Given constraint valuations shown
at top and a random starting assignment of A=x, B=y, and C=z,
DNEA finds the optimal assignment in one round of exchanges.
Note how the utility exchange message from B to A in step 2
contains aggregated utility from C.

For each variable X with domain DX in the DCOP instance, an
associated agent chooses a value to assign the variable from a set of
neighborhood utility valuations. At the beginning these valuations
are zero, so the agent randomly assigns a value to X . On sub-
sequent iterations, the agent will have received a utility exchange
message for each variable that is a neighbor in the constraint graph.
Each utility exchange message includes a utility value for each pos-
sible assignment in DX for X . Each of these values represents the
best local utility the neighboring variable can achieve for each pos-
sible value of X . The agent then sums all of the neighbor valua-
tions together and adds the sum of local valuations for the vector of
possible assignments in X:

UX = localSumX + exchangeSumX (1)

Note that each term in equation 1 is a vector of corresponding size
to the possible assignments in X . The agent then chooses with
probability p to change the value of X to the maximum assignment
in UX .

3.2.2 Utility Exchange
When the agent for variable X receives all new values for neigh-

boring variables of X , it calculates a set of utility exchanges. First,
the agent calculates the local utility at X for each possible assign-
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ment in DX to X given the current neighboring variable assign-
ments β ∈ NX (producing the vector localSumX in equation 1):

localSumX = ∀α ∈ DX

X

β∈NX

U(α, β) (2)

Then, for each neighbor Y , the agent calculates its optimal as-
signment to X for each value γ ∈ DY given the current neighbor-
ing variable assignments minus the current assignment β for Y :

exchangeSumX(Y ) = ∀γ ∈ DY arg max
α∈DX

ˆ

localSumX(α) − U(α, β) + U(α, γ)
˜

(3)

This maximum local utility at X for each value in DY is sent
to the agent for variable Y (term exchangeSumX in equation 1).
After the agent has calculated and sent all of these utility exchange
messages, it waits for updated value exchange messages from its
neighbors.

3.3 Complexity Analysis
The Distributed Neighborhood Exchange Algorithm has a simi-

lar flow of execution to other local value exchange algorithms, but
calculates a merge of utility valuations for all neighbors in a single
cycle; this drastically decreases the number of message passing cy-
cles required for convergence. Maximum computation per variable
per phase for DNEA is O(|NX | · |DX |) for value exchange and
O(

P

Y ∈NX
|DY | · |DX |) for utility exchange. Because it is based

on local search techniques, it is amenable to dynamically changing
problem domains.
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Figure 2: Graph Coloring Problems: 40 variables. Utility
over message passing cycles shown for DNEA verses other local
search algorithms.

3.4 Comparison with other DCOP algorithms
We compare messaging metrics between algorithms because it

is assumed that the processing done at each local DCOP agent is
sufficiently small in comparison to message transit time (a factor
of both latency and bandwidth). The overall run-time of each algo-
rithm is dominated by message passing cycles.

We tested DNEA against four local search algorithms, DSA and
DBA from [13], and SCA2 and SCA3 from [1]. We made one opti-
mization for these algorithms that significantly improved their per-
formance: all variables were allowed to change (or offer a group
change) values if the gain was greater than or equal to zero (in-
stead of only greater than). We chose these local search algorithms
because they are able to scale to problem sizes containing 1,000+

variables. We performed comparisons for standard graph coloring
problems that can be found in the DCOP repository at USC [8].
There are 25 problems that contain 40 variables each, with 120
constraints, and 3 possible colors for each variable, with constraint
violations for connected variables of the same color worth -1 util-
ity. Each problem was run 10 times for each algorithm with the
same set of 10 random number seeds and results are shown as the
average global utility at each message passing cycle in Figure 2.

3.4.1 Performance: Message Passing Cycles
We observe that DNEA reaches a high utility by cycle 20 and

the highest utility by cycle 40. This was the goal in the creation
of DNEA, to be able to achieve high utility with very few message
passing cycles while keeping polynomial time calculation for each
cycle. We do not show it here, but eventually SCA2 and SCA3
catch up; however, it takes well over 500 cycles to do so. Since
fast convergence is a necessity for dynamically changing problem
domains, DNEA offers a compelling option for such domains.

3.5 Extension for Exchange Depth
In the description of DNEA in Section 3.2.2 we note that the

Utility Exchange phase passes information only between immedi-
ate neighbors. We can extend this exchange of information to addi-
tional nodes while maintaining our O(

P

Y ∈NX
|DY | · |DX |) run-

time per utility exchange phase by performing d utility exchange
phases between value assignment phases. We define exchange
depth, d, as the number of constraint hops between the original
sender of a utility exchange message and the farthest receiver to
which the message propagated. Propagation of utility exchange for
d > 1 is handled exactly as in Phase 2 of the original algorithm.

3.5.1 Exchange Depth Results
In our tests, increasing exchange depth does not help on the prob-

lems tested in Figure 2, mainly because they do not have a high
constraint density, averaging 3 constraints per node. To test highly
constrained graphs, we tested depths 1 to 6 in Figure 3 on large
graph coloring problems with 500 variables and an average of 10
constraints per node. We immediately see that there is a benefit
for exchanging information to additional depths. At depth 2 we see
substantial gains over depth 1. We note the stair-stepping behaviour
of DNEA when using exchange depths greater than 1; since DNEA
does not assign new values while it is waiting for exchanged utility
to propagate, we see the width of the steps increases as the ex-
change depth increases. We also observe that the larger the depth
value, the more cycles are required to converge. For our future
tests we will use a depth setting of 2 since it represents a profitable
tradeoff between convergence speed and high utility.

4. DCOP WITH UTILITY
DISTRIBUTIONS

Existing DCOP formalizations require deterministic utility out-
comes for constraint assignments. This representation precludes
reasoning about uncertainties within a DCOP algorithm, limiting
the current scope of problem domains for DCOP. This section intro-
duce a new DCOP formalization that allows for non-deterministic
constraint functions that evaluate to discrete utility distributions.

We can extend the DCOP problem formalization to include un-
certainty by allowing constraint evaluation functions to return a dis-
tribution instead of a single value. A global optimum is now an
optimal distribution instead of a maximum (or minimum) sum. To
evaluate the optimality of a distribution, evaluation criteria must be
formalized. The optimal evaluation function may not be the same

1049



-400

-380

-360

-340

-320

-300

-280

-260

 0  20  40  60  80  100

U
ti
lit

y

Cycles

DNEA-depth1
DNEA-depth2
DNEA-depth3
DNEA-depth4
DNEA-depth5
DNEA-depth6

-400

-380

-360

-340

-320

-300

-280

-260

 0  20  40  60  80  100

U
ti
lit

y

Cycles

Figure 3: Large Graph Coloring Problems: 500 variables. Util-
ity over message passing cycles shown for DNEA using ex-
change depths from 1 to 6.

for all problems for all agents. Thus we must include the evalua-
tion function as part of the extended DCOP problem. We extend
our previous DCOP formalization for this:

• U = {u1,..,um} is a set of utility functions such that each
function involves a subset of variables in X and defines a
utility distribution for each combination of values among
these variables

• u = {(u1
p, u1

v),..,(ut
p, ut

v) } is a distribution of probabilities

and values such that
Pt

r=1 ur
p = 1

• E = {e1,..,en} is a set of evaluation functions for each vari-
able that reduce a utility distribution to a single utility value;
e(u) = v where v is a single utility value

This extension requires extra computation and memory propor-
tional to the maximum allowed size of a distribution. However,
it allows processing of non-linear functions over combinations of
utility distributions, which proves very useful to implementing risk
averse behavior in our application domain as shown in Section 5.6.

5. C-TÆMS COORDINATION PROBLEM
Multi-agent task planning and scheduling problems require a

rich language for domain representation. In this section, we map
problems in one such language, C-TÆMS, to our formalization of
DCOP with uncertainty.

5.1 C-TÆMS
The original TÆMS (Task Analysis, Environment Modeling,

and Simulation) language was developed to provide a domain in-
dependent, quantitative representation of the complex coordination
problem [3]. A C-TÆMS problem instance, sample shown in Fig-
ure 4, contains a set of agents and a hierarchically decomposed
task structure. Nodes in the graph are either complex tasks (in-
ternal nodes) or primitive methods (leaf nodes). Each node may
have temporal constraints on the earliest start time and the dead-
line. Nodes may also have non-local effect (NLE) constraints that
represent hard (enables and disables) and soft (facilitates and hin-
ders) node relationships. Methods have probabilistic outcomes for
duration, quality, and cost. Tasks have a quality accumulation func-
tion (QAF) that describes how quality accrues at the task based on
the quality of its subtasks and methods.

Figure 4: An example C-TÆMS problem instance.

5.2 Existing C-TÆMS mapping
A mapping for a subset of C-TÆMS to DCOP is proposed in

[11]. The mapping using our formalization is:

• X = Each method is assigned to a unique variable.

• D = Unique domains for each variable containing all possi-
ble start times for the method assigned to the variable.

• U = Three types of utility functions:

– Mutex constraints on all pairs of methods that share the
same agent

– For an NLE between two nodes, N1 and N2, all meth-
ods in the subtree of N1 have a precedent constraint
with all methods in the subtree of N2

– Unary soft constraints on each method that apply a cost
if the method is not scheduled

While this mapping is a good start, it is severely limited. It allows
only sum, min, and max QAFs, and all QAFs in the same problem
must be of the same type (no mixing sum with max QAFs, or taking
the max over a set of sums). It also only allows enables NLEs and
requires deterministic task outcomes, so it cannot handle NLEs that
are contingent upon the outcome of a method or method’s with non-
deterministic quality or duration. Because it requires deterministic
task outcomes, this also precludes advanced uncertainty reasoning
which could avoid risky inter-agent schedules.

We propose a new mapping that includes the full set of QAFs,
NLE functions, and uncertainties used in the DARPA Coordinators
project.

5.3 Proposed mapping
Our proposed mapping for C-TÆMS to DCOP can be broken

into two distinct parts: variable and constraint mappings. In the
variable mappings we describe the domain values for the variable.
For the constraints we present the utility function rules for involved
variable values. All constraints are binary constraints in this map-
ping and produce discrete utility distributions as presented in Sec-
tion 4.

5.4 Variables
Variables are created for each method and task in the C-TÆMS

problem. In addition, a special end-time variable is created for each
task with an outgoing NLE at or above it in the structure.
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5.4.1 Methods
Method variables are created with all possible start times as val-

ues and an additional value for not scheduled. Additional values are
created for each permutation of a modifier that affects the method,
including a synchronization point and all incoming NLEs.

5.4.2 Tasks
Task variables can have several different sets of values depend-

ing on the type of QAF assigned to the task. These values describe
how quality will accumulate from subtasks and methods. All task
variables contain values for no execution and execution allowed no
quality that force children not to execute or to not accumulate qual-
ity (respectively). Max, min, and exactlyone QAFs contain val-
ues representing the children that will accumulate quality. Sum
QAFs and sumand QAFs have a single sum quality value. Sync
sum QAFs contain values for all possible synchronized start times
for descendant methods. All task domains with a sumand QAF an-
cestor also have a modifier flag to force execution if set to a quality
accumulating value.

5.4.3 NLEs
Non-local effects do not have their own variables. However, if

a non-local effect originates at a task, then a special task end time
variable is created for the task. This task end time variable contains
all possible ending times for descendant methods and a value for
not scheduled.

5.5 Constraints
Constraints are created between each related node in the prob-

lem structure. There are four types of relationships we create con-
straints for: task-subtask, task-method, method-method at the same
agent, and to and from nodes in a NLE. In addition special con-
straints are created for synchronization points. The actual imple-
mentation values for constraints will be problem specific, with the
following defined values: Qmax is an upper bound for the maxi-
mum quality of the entire problem structure and QM1 is the quality
distribution for method M1. All hard constraints are enforced us-
ing −Qmax as the utility for a constraint violation.

5.5.1 Task-Subtask
A task-subtask constraint enforces a correct accumulation of

quality up from the methods through each of the QAFs to the root.
Generally, the constraint enforces that a subtask may only accumu-
late quality if the task allows it. Additionally, this constraint propa-
gates information about the forced execution modifier flags so that
a subtask knows if the task is relying on it to produce some qual-
ity. If a task is assigned to accumulate quality, the implementation
depends on the type of QAF.

5.5.2 Task-Method
A task-method constraint accumulates the quality for properly

scheduled methods. Thus for a valid scheduled method, this con-
straint returns a value of QM . The value for QM includes any
modification indicated by incoming NLE flags (for example it will
be twice the original method quality if a facilitation flag is set with a
factor 2). A constraint violation occurs if any method is not sched-
uled and is in the set of methods selected for scheduling by the task
value. Again, the implementation for accumulating quality depends
on the type of QAF.

5.5.3 Method-Method
A method-method constraint ensures that an agent is not sched-

uled to execute two methods at the same time. A mutex constraint

Figure 5: A real-world C-TÆMS problem instance with uncer-
tainty.

is created between all pairs of methods at an agent. We prune
all mutex constraints that have no possible overlap. For assign-
ments that would cause overlap, the utility returned is equal to
maxk∈CM −QMk where CM is the set of methods involved in
the constraint.

5.5.4 Non-Local Effects
A non-local effect (NLE) constraint may occur between tasks,

methods, or both. In keeping with the CTÆMS specification, we
decompose non-local effect constraints into only task-method and
method-method relationships. A task-task constraint between T1

and T2 by definition behaves the same way as if the constraint ex-
isted from T1 to all descendant methods of T2. For task-method
NLEs we use the special end time variable to calculate the time at
which the NLE is active. For method-method NLEs we use the start
time plus the duration (which is a distribution) to determine when
the NLE is active. Active NLEs can help produce positive quality
or may produce constraint violations depending on the type of the
NLE.

5.6 Uncertainty in the C-TÆMS scheduling
problem

Uncertainties for task characteristics in C-TÆMS are repre-
sented as discrete distributions of values, primarily over duration
and outcome quality of methods. To illustrate the usefulness of our
model of DCOP with Utility Distributions for this domain, lets up-
date the simple CTÆMS structure in Figure 4 with a real scenario
with uncertainty. The new scenario is shown in Figure 5. In this
example, Agent1 does not know what the quality outcomes of In-
filtrate the Base (M1) and Attack the Base (M2) will be a priori.
Agent2 knows the outcomes for Recover Equip. (M3) and Destroy
Equip. (M4), but is dependant on Agent1’s choice of execution be-
cause of the enables relationship. Based on the deadlines involved,
the agents can either execute M1+M3 or M2+M4 (M1+M4 is pos-
sible but clearly inferior to M1+M3). How does Agent1 choose
whether to execute M1 or M2? Assuming uniform probability dis-
tributions, let us consider three evaluation functions:

• Average Value (Exponential Value=1) - For M1+M3 this is
(0.5 ∗ 5 + 0.5 ∗ 10) + 15 = 22.5 and for M2+M4 this is
(0.5 ∗ 1 + 0.5 ∗ 30) + 10 = 25.5. M2+M4 is the optimal
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choice here.

• Interval Average (0 to 0.5) - For M1+M3 this is 5+15 = 20
and M2+M4 as 1 + 10 = 11. Thus M1+M3 is the optimum
choice.

• Parametric Integration (Risk Averse, 2 ∗ (1 − x)2) - For
M1+M3 it evaluates to (0.875∗5+0.125∗10)+15 = 20.625
and for M2+M4 it is (0.875∗1+0.125∗30)+10 = 14.625.
M1+M3 is the best choice for this function as well.

We see that the average value function does not take any risk
into account. The second function is mildly risk averse but doesn’t
really take into account the whole distribution. The third function is
strongly risk averse and does evaluate over the whole distribution.
For all of our presented results we use the third function.

5.7 Static C-TÆMS Internal Comparison
To determine what algorithms and configurations to use for the

full DARPA simulation platform, we apply our C-TÆMS mapping
in a static scenario (the agents are searching for the schedule with
best expected utility but no methods are executed and scenario time
stays at 0). This scenario was run in two parts, one randomly gen-
erating an initial schedule for the agents, and one using an initial
schedule generated by an offline deterministic solver. Each sce-
nario was run 10 times using different random seeds. Details of
the scenarios (“OptOP5PMix” and “OptBigReMix”) are provided
in Section 6. Results are shown in Figures 6, 7, 8, and 9.

It is clear that for all scenarios, including those with and without
initial schedules, DNEA at exchange depth 2 converges quickly to
the schedule with the best estimated utility. We see this beginning
at cycle 45 in Figure 7, cycle 50 in Figure 6, and cycle 25 in Fig-
ure 8. This result led us to use DNEA at exchange depth 2 as the
base algorithm in our Coordinators simulation.
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Figure 6: OptOP5PMix: ∼100 variables, random initial sched-
ule. DSA not shown as it never exceeds -50000.

5.8 Existing Non-DCOP Approaches
Three teams participated in the second phase testing of DARPA’s

Coordinators project, which used C-TÆMS scenarios for their test
suite, and used very different approaches. Detailed descriptions
of the approaches can be found in [5, 12, 10]. The best perform-
ing team used a risk avoidance strategy based on predictability
and criticality metrics (PCM). These metrics did not aim to opti-
mize an approximate global utility function, but instead minimized
chances for conflicts while opportunistically inserting changes that
did not negatively impact the current schedule. A second approach
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Figure 7: OptOP5PMix: ∼100 variables, given initial schedule.
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Figure 8: OptBigReMix: ∼1000 variables, random initial
schedule
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Figure 9: OptBigReMix: ∼1000 variables, given initial sched-
ule. DNEA depths 2 and 3 not shown because they are equiva-
lent to depth 1 for this test.

used simple temporal networks to create a flexible time schedule
of methods that changes over time using constraint propagation
(FTS). Agents choose to modify the schedule when speculation in-
dicates local utility gain is greater than neighboring utility loss. The
third approach used distributed MDPs to approximate optimal exe-
cution policies (MDP).
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Our approach is most similar to the FTS approach because we
use DCOP to optimize over a flexible execution schedule. How-
ever, we design the constraints with discrete value distributions and
reason over them using a risk aversion function. This function pro-
vides a similar role to the metrics used in the PCM approach as it
is not a direct approximation of the global utility function.

6. RESULTS
We now present results using our DCOP-based multi-agent so-

lution to challenging, real-world coordination problems that were
part of DARPA’s Coordinators program. Our solution required
many additional lower level components to interact between the
test simulation and our underlying DCOP mapping and algorithm.
These components are not presented here, but are available upon
request from the authors.

6.1 Timed Simulation
The actual Coordinators project uses a simulation framework

based on simulated time ticks. A master simulation agent tracks
a schedule of agent requests for method executions. The simula-
tion agent sends a pulse message to each agent for each simulated
time tick. Actual simulation runs set the simulated time per tick to
one second of real time, with the first methods to execute typically
available beginning at tick 30. Agent communication is bounded
by a message passing infrastructure that allows only around 20-50
messages to be sent from any agent per second. These compu-
tational and communication bounds place tight restrictions on the
agent reasoning capabilities.

We ran tests using the Coordinators simulation for four sets of
problems. Each scenario within a problem set had similar charac-
teristics to other scenarios in the same set:

1. OptOP5PMix - 50 medium sized scenarios (average of 26
agents, 104 tasks/methods, 16 NLEs, 112 ticks of execution,
and no C-TÆMS meta-events); contains initial schedules.

2. OptBigReMix - 8 large sized scenarios (average of 15 agents,
1018 tasks/methods, 137 NLEs, 1680 ticks of execution, and
no C-TÆMS meta-events); contains initial schedules.

3. BakeA25Mix - 32 large sized scenarios (average of 25 agents,
1283 tasks/methods, 192 NLEs, 589 ticks of execution, and
16.5% of the task structure updated with C-TÆMS meta-
events); contains initial schedules.

4. RealWorld-HighDyn - 32 large sized scenarios (average of 33
agents, 1257 tasks/methods, 148 NLEs, 471 ticks of execu-
tion, and 27.5% of the task structure updated with C-TÆMS
meta-events); does not contain initial schedules.

6.2 Coordinators Simulation
Result comparisons for the first two problem sets are shown in

Figure 10 and Figure 11 as the percent of quality achieved by each
team with respect to the known optimal quality as determined by
an offline, centralized MDP solver (such an MDP solver does not
work in the real-time scenario because it takes much more time to
construct this policy than allowed in the scenario; additionally for
the second two problem sets the offline MDP solver simply cannot
solve problems of that magnitude due to exponential time com-
plexity). Result comparisons for the second two problem sets are
shown in Figure 12 and Figure 13 as the percent of quality achieved
by each team with respect to the best quality achieved by any team
for each scenario.

For comparison, we show a baseline strategy that used no coor-
dination and simply executed the initial schedule given in the prob-
lem, and opportunistically inserted unscheduled methods when
they would not conflict with future scheduled methods (labeled
Naive). We do not show the Naive approach on the meta-event
scenarios as it achieved 0 quality because it does not process meta-
events. We also show results for the three teams that took part
in the Coordinators second phase testing (labeled using abbrevia-
tions from Section 5.8). Our DCOP approach is shown using the
Distributed Neighbor Exchange Algorithm (DNEA) with exchange
depth equal to 1 and 2.
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Figure 10: OptOP5PMix: Solution Quality as % of optimal.
Error bars show standard deviation.
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Figure 11: OptBigReMix: Solution Quality as % of optimal.
Error bars show standard deviation.

7. ANALYSIS
We see clearly that our DCOP approach can achieve much higher

performance than the naive baseline in Figures 10 and 11. Table 1
shows the total number of best quality scores achieved by each team
for the problem sets (ties are possible) where we used normalized
results because the optimal value is unknown.

The “BakeA25Mix” and “RealWorld-HighDyn” scenario sub-
sets were among the most difficult sets and showed the largest dis-
parities between the top performing DARPA team (the PCM team)
and the rest of the teams.

Our DCOP approach achieved a very high level of performance
for this application domain and was very competitive with the
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Figure 12: BakeA25Mix: Solution Quality as % of best
achieved by any solution. Error bars show standard deviation.

 0

 20

 40

 60

 80

 100

D
N
EA1

D
N
EA2

M
D
P

FTS
PC

M

%
 o

f 
b
e
s
t

85
88

23

71

96

Figure 13: RealWorld-HighDyn: Solution Quality as % of best
achieved by any solution. Error bars show standard deviation.

PCM team. We were able to match their performance on the
“BakeA25Mix” scenarios and managed to outperform their solu-
tion on roughly half of the problems in this set. Our DCOP ap-
proach also performed very well on the “RealWorld-HighDyn” sce-
narios, but fell just short of the PCM team’s performance. However,
the DCOP approach was able to achieve higher performance on
about a third of the scenarios within this set. The major difference
between these two scenario sets is that the “RealWorld-HighDyn”
scenarios do not provide the agents with any initial schedule. If our
DCOP agent does not receive an initial schedule from the scenario
it randomly makes variable assignments to the methods such that
no local method overlaps execution. However, it does not consider
NLEs, task tree composition, or uncertainties about the method
when making this initial assignment. This is the main reason why
our solution does not do better on the “RealWorld-HighDyn” sce-
narios, as we were able to see by running the scenarios multiple
times that our variance in quality was largest on these problems.

8. CONCLUSION
We have presented four major contributions to DCOP based so-

lutions for complex, real-world multi-agent systems domains. We
introduced a new scalable DCOP algorithm, the Distributed Neigh-
bor Exchange Algorithm, that achieved high quality solutions with
extremely fast convergence. We developed a new DCOP formal-
ization for domains with uncertainty and showed how a complex

Approach BakeA25Mix RealWorld-HighDyn

DNEA1 7 5

DNEA2 12 15

MDP 0 0

FTS 0 0

PCM 13 12

Total Possible 32 32

Table 1: Number of problems in each scenario which an ap-
proach achieved the best performance in the comparison group
(ties possible).

multi-agent planning and execution language can be mapped to this
formalism. Finally, we combined our contributions into a DCOP-
based solution to challenging scenarios that were a part of DARPA’s
Coordinators program. We achieved a high level of performance
for this domain, comparable to the best performing Coordinators
team for many problems. These results show that DCOP techniques
can be used to solve large-scale, real-world problems, and that con-
tinued work in this direction is very promising.
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